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An Echo State Network (ESN) with an activation function based on the Kuramoto
model (Kuramoto ESN) is implemented, which can successfully predict the logistic map
for a non-trivial number of time steps. The reservoir in the prediction stage exhibits
binary dynamics when a good prediction is made, but the oscillators in the reservoir
display a larger variability in states as the ESN’s prediction becomes worse. Analytical
approaches to quantify how the Kuramoto ESN’s dynamics relate to its prediction are
explored, as well as how the dynamics of the Kuramoto ESN relate to another widely
studied physical model, the Ising model.

I. INTRODUCTION

Applications of machine learning in applied mathematics and physics are widespread and successful. Using machine
learning to approximate functions in high dimensions has opened up many new avenues for investigating nonlinear
dynamics in the past three decades. Additionally, the practice of predicting and analyzing chaotic systems with
neural networks offers the opportunity to learn more about both the dynamics of the neural network as well as the
dynamics of the chosen chaotic system [1].

Why predict the logistic map with a Kuramoto ESN? While the complex dynamics of Echo State Networks, the
Kuramoto model, and the logistic map have been investigated extensively in separate pieces of literature, this project
broadly aims to combine previously disconnected analytical approaches to all three of these systems. While insights
are gathered from a variety of angles, we are especially interested in analyzing the dynamics of our Kuramoto ESN
as it learns the logistic map, and we emphasize our implementation of the Kuramoto model in the ESN as a novel
approach to analyzing the properties of the logistic map.

II. METHODS

A. Echo State Networks

Figure 1: Echo State Network

Recurrent Neural Networks (RNNS), which
allow for recurrent connections between their
artificial neuron layers, have a unique abil-
ity to learn high-dimensional dynamical sys-
tems. In some cases this learning abil-
ity is much better than that of their feed-
forward counterparts, which feature single-
layer connections between their artificial neu-
rons (without recurrence) [2]. However, feed-
forward neural networks have been used pre-
dominantly for the last 25 years in ma-
chine learning research. This is largely
because recurrent connections within RNNs
produce nonlinear dynamics, and as such,
training these networks is significantly more
challenging than simple back propagation
[3].

The neural network discussed in this report—the Echo State Network—is a type of RNN. ESNs fall under a
paradigm known as reservoir computing (RC). An ESN (Figure 1) is composed of an input layer, a middle layer (the
reservoir), and an output layer. The reservoir is usually sparsely connected, and the majority of the reservoir weights
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are unchanged from their initial conditions throughout the training procedure. Only the weights connected to the out-
put layer are modified in training, allowing ESNs to circumvent many of the traditional difficulties in training RNNs
[4]. The universal function approximation property possessed by ESNs allows them to produce high-dimensional
non-linear dynamics and predict chaotic time series, such as the logistic map, remarkably well [5].

A classic ESN with input data dimension L, network size N , and output size P has an input matrix U ∈MNxL(R),
a reservoir matrix W ∈ MNxN (R), and an output matrix V ∈ MPxN (R). For each node in W , its state at time t,
x[t] is updated by:

x[t+ 1] = f(ηU · (a[t+ 1]− β) + εW · x[t]) (1)

for input data at time t, a[t+1] and a nonlinear activation function f . There are 4 hyperparameters in the network,
η, the input matrix scaling, β, the input bias term, ε, the network coupling strength, and κ, the number of connections
from each oscillator in the network. After some transient time t1 and training time t2, the output matrix V is trained
using linear least squares,

V = DXH(XXH)−1 (2)

y[t+ 1] = V x[t] (3)

where X ∈MNx(t1+t2)(R) is a matrix of oscillator states, D ∈MPx(t1+t2)(R) is a matrix of the ground truth system,
and H denotes the Hermitian transpose of a matrix. Thus for the testing time, t3, the state update is given by
equation (3). The predicted output from the model, y[t+1] is then used in equation (1) in place of a[t+1] to create
a free-running prediction. Model performance is quantified via the Correlation Coefficient between D′ ∈ MPxt3(R)
and Y ′ ∈MNxt3(R), a matrix of the free-running predicted output.

B. Kuramoto Model

The Kuramoto model is a canonical model for describing synchrony in nonlinear oscillator networks, represented
by

θ̇i = ω + ε

N∑
j=1

Aijsin(θj − θi) (4)

Where θi represents the state of oscillator i, ω is the external input, ε is the coupling strength between oscillators,
and A is the adjacency matrix representing the network of connections between oscillators. The Kuramoto model is
widely used in computational and theoretical neuroscience to describe traveling waves in the brain [6] [7]. While the
original Kuramoto model has no analytical solution, an algebraic model with coincidental argument to the original
Kuramoto model has recently been developed, which provides many novel analytical insights to the original Kuramoto
model [8]. Both the original and algebraic approach to the Kuramoto model can serve as activation functions in
an artificial neural network. Since the Kuramoto model has been widely studied as a model for synchrony, and the
algebraic approach can be solved with complex-valued solutions, studying the application of these activation functions
may allow for tantalizing insights into the dynamics of such a neural network.

In the classic ESN, the activation function, f in equation (1) is commonly chosen to be tanh [9]. In our imple-
mentation of the Kuramoto ESN, we use an activation function modeled after the Kuramoto model. Equation (4)
represents the original Kuramoto model. Note that in equation (4) external input, ω, is constant to all oscillators, but
a solution exists for heterogeneous input to oscillators that is constant over time [8]. We consider a similar system to
equation (4) that is complex-valued; it is introduced in [8] with a shifted coordinate frame:

ψ̇i = ε

N∑
j=1

Wij [sin(ψj − ψi) + icos(ψj − ψi)] (5)

which implies ψi ∈ C. Multiplying both sides by of the equation by i and using Euler’s formula, the equation becomes:

iψ̇i = γe−iψi

N∑
j=1

Wije
iψj (6)
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(a) a = 3.2 (b) a = 3.5441

(c) a = 3.7 (d) a = 4

Figure 2: Discrete logistic map prediction

Multiplying both sides of the equation by eiψi , we get:

iψ̇ie
iψi = γ

N∑
j=1

Wije
iψi (7)

Now, noticing that iψ̇ie
iψi = d

dte
iψi and making the substitution xi = eiψi , the equation simplifies to

ẋi = γ

N∑
j=1

Wijxj (8)

Which, in matrix form is:

ẋ = γWx (9)

Whose general solution is

x[t] = eγtWx[0] (10)

This update equation is the one used in the Kuramoto ESN. The constraint that the Kuramoto ESN must have
constant heterogeneous external input over time is mentioned earlier in this section, but since the external input
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follows this rule:

ω[t] = U · a[t] (11)

the input is not constant over time. We use a windowed approach to the time dimension, with a time window of one
and a time step of one, effectively making the update rule recursive:

x[t] = eγtWx[t− 1] (12)

In addition to altering the activation function from the tanh function, we make use of a unique reservoir topology.
The network for our Kuramoto ESN is that of a ring, or a one-dimensional torus. The matrix representation of our
ring is circulant, and thus the Circulant Diagonalization Theorem (CDT) states that the eigenvectors of the reservoir
are simply its fourier modes, and can be determined analytically. Thus, equation (12) can also be written as

x[t] = V eγtDV ′x[t− 1] (13)

where V is a matrix of the eigenvalues of W and D is a diagonal matrix of the eigenvalues of W . The analytical
description of eigenvalues of the system allows us to further study the Kuramoto ESN in an analytical framework

through the eigenmodes of the matrix W , given by the inner product µi[t] = ⟨x⃗[t], v⃗i⟩, where µi denotes the ith
eigenmode associated with the ith eigenvalue vi.

(a) a = 3.2 (b) a = 3.5441

(c) a = 3.7 (d) a = 4

Figure 3: Binary reservoir dynamics (teal and dark blue) for well-predicting Kuramoto ESNs
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(a) a = 3.2 (b) a = 3.5441 (c) a = 3.7 (d) a = 4

Figure 4: Poor network predictions and their corresponding reservoir dynamics

C. The logistic map

The logistic map is a canonical system in chaos literature. Although it is the result of a very simple recurrence
relation, it can produce complex and chaotic behavior. The discrete logistic map is defined recursively as follows:

xn+1 = a · xn(1− xn) (14)

with a ∈ (0, 4] and xn ∈ [0, 1]

Past a = 3.56995..., a number related to the Fiegenbaum constant, the logistic map demonstrates chaotic behaviour.
Interestingly, although equation (14) fully characterizes the logistic map, two closed-form analytical solutions have
been discovered — a solution for a = 2, and one for a = 4 (which is of the most interest to our research on chaotic
systems):

f(n) =
1

2
(1− cos(2n arccos(1− 2x0))) (15)

III. RESULTS

A. Analyzing network performance

Firstly, we classify what is deemed a good prediction from our network. The Correlation Coefficient, r, is used
to compare the correlation between the Kuramoto ESN’s free-running prediction and the logistic map testing data.
We say that when r > 0.95 for t time steps, that our network is performing well. When r <= 0.95, we say that the
network is performing poorly.

As shown in Figure 2, the Kuramoto ESN makes an accurate free-running prediction for 30 time steps, with
r > 0.96 for each of the 4 cases tested. The hyperparameter selections η, ε, κ, and β have been found through
randomly scanning. It can be seen in the contrast between the groups of Figure 2(a-b) and Figure 2(c-d) that the
Kuramoto ESN predicts non-chaotic regimes of the logistic map better than it predicts chaotic regimes, and further
within those chaotic regimes, the model does much better in prediction when the Maximum Lyapunov Exponent
(MLE) is low, such as at a = 3.7, than it does when the MLE is higher, such as at a = 4.
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(a) a = 3.2 (b) a = 3.5441

(c) a = 3.7 (d) a = 4

Figure 5: Eigenmodes of the reservoir evaluated on a log scale

B. Network dynamics

Figure 3 shows the plots of arguments (mean-subtracted) of the oscillators in the Kuramoto ESN as a function of
increasing time. One can see an initial transient (yellow and teal), followed by the emergence of binary phase states
in the network (dark blue and teal). It can be noted that these binary dynamics fail to arise in a bad prediction of
the logistic map dynamics (Figure 4).

In addition to generating the reservoir dynamics, we also analyze the eigenmode contributions to the dynamics of
the reservoir (Figure 5). The dynamics of the reservoir are clearly not governed by the dynamics of any eigenmodes,
as they are in fully synchronized systems. It is noted that for a coupling strength 0.001 ≤ ε ≤ 0.0001, dominating
eigenmodes begin to emerge (Figure 6). Unfortunately, no scenario in which these dominating eigenmodes coincide
with a good prediction has been found.

IV. DISCUSSION

As shown in Figure 3, the phase of the oscillators in the reservoir demonstrate binary dynamics in a good prediction.
Because these binary dynamics are so apparent in the simulations, there may be some connection between the binary
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(a) ε = 3.1673

(b) ε = 3.1673e−4

Figure 6: Eigenmode contributions in coincidence with predictions

dynamics of a Kuramoto ESN during strong prediction and the binary dynamics of another known physical model,
the Ising model. If some connection is found between the reservoir of the Kuramoto ESN and the Ising model,
one might be able to nicely apply predictions to physical problems, such as magnetism and gaseous dynamics. In
addition to the physical meaning of this connection, there is opportunity to better understand the Ising model in 2
or 3 dimensions, as n-dimensional analogs for the Kuramoto ESN exist. The Ising model is a cannonical model in
nonlinear dynamics, and is applied to many areas of research from biology to physics, to engineering.

In addition to gathering more data about the dynamics of the system, a major limitation of the eigenmode analysis
currently being done on the system is that the analysis is linear, while the system we analyze is nonlinear. This can
explain the complexity of the eigenmode contribution in Figure 5, although eigenmode analysis still may be useful
yet, as our system does exhibit areas of local linearity.

Another factor that makes analysis of our Kuramoto ESN more challenging is the fact that there is an absence
of traveling waves in our network. Since the Kuramoto ESN echoes the dynamics of the chaotic system it aims to
predict, it is reasonable that there are no waves in the network. While the lack of waves is to be expected, it makes
analysis in terms of eigenmodes and geometry of synchrony less likely. As such, we must also look for alternative
avenues to proceed with network dynamics analysis.

In future work, the authors hope to improve the capabilities of the Kuramoto ESN to predict the logistic map for
more time steps, as analysis of longer term free-running dynamics may be more fruitful. We also want to continue
formalizing the algebraic analysis of the network, and continue to explore the connection between the Kuramoto ESN
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Figure 7: Oscillators of output matrices for different values of a. The weighting for each oscillator (vertical axis) is
log-scaled.

and the Ising model.

V. CONCLUSION

The Kuramoto ESN introduced in this paper uses a complex-valued state update rule and alterations to the reser-
voir topology to provide novel analysis about reservoir computing. Specifically, our observations offer some insight
into how ESNs learn and predict nonlinear systems. Using the complex-valued approach to the Kuramoto activation
function, we predict the logistic map at a variety of chaotic and non-chaotic regimes successfully for 30 time steps.
The Kuramoto ESN reservoir exhibits binary dynamics, but quite indiscernable eigenmode signatures. The authors
look forward to continuing to analyze past results from this project, exploring new approaches for analyzing on the
Kuramoto ESN reservoir, and looking to use the analytical description of the Kuramoto ESN to formally link it to
the Ising model. Analytical descriptions of the ESN, both during and after training, may provide valuable insights
into both reservoir computing and nonlinear oscillator networks.

VI. SUPPLEMENTARY

This section offers analytical approaches to this system that may warrant future exploration, but currently remain
disconnected to our main conclusions.

A. Learning Matrix Correlation

In most implementations of the Kuramoto ESN, the input matrix weights are sampled randomly from a uniform
distribution [-0.5 0.5]. To eliminate some of the randomness from the model, mean-subtracted values generated from
the logistic map at a = 4 from time t = 800 to time t = 800 + N were used in place of the random input vector,
U , where N is the size of the input vector. With this deterministic model, we noticed high correlation in the output
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Figure 8: Prediction of the logistic map at a = 3.9999 using a readout matrix trained on a = 4

matrices of trained ESNs on a = 4 and a = 4− ε (Figure 7). We can also observe decent prediction (Figure 8) of the
logistic map at a = 4− ε using an output matrix trained for a = 4. The logistic map at a = 4 is highly chaotic and
sensitive to initial conditions, thus the fact that there is any correlation between the learning matrices at a = 4 and
a = 4− ε is noteworthy. This inference indicate that the analytical solution for the logistic map at a = 4 may provide
insight into the logistic map at other similar a values.

B. Tchebyshev Polynomials

Functions on finite intervals can be approximated using linear combinations of Tchebyshev polynomials. First,
choose n to be the number of Tchebyshev nodes on the interval [a, b]. The nodes are calculated using the following
formula:

xi = cos(
2i− 1

2n
π) (16)

with i ∈ 1, 2, ..., n. This equation returns Tchebyshev nodes from [−1, 1] that can be re scaled to values from [a, b].
Through Tchebyshev approximation, we can find a polynomial which has equal values to the function of interest at the
Tchebyshev nodes. Traditionally, Tchebyshev polynomials are used to approximate continuous functions. However,
rescaling the nodes allows the Tchebyshev polynomials to be used to analyze discrete functions through continuous
approximations. This may be an especially worthwhile approach for analyzing the logistic map, since it is of special
interest to this project to extend our understanding of the continuous analytical solution to the logistic map at a = 4
to other a values for which we have only discrete and recursive representations. Currently, we can transform equation
(14) to an evaluated Tchebyshev polynomial as follows. Considering the substitution:

X(t) = 1− 2x(t) (17)

Thus equation (14) becomes:

X(t+ 1) = 2X2(t)− 1 (18)

Then equation (15) evaluates to:

X(t) = cos(2t arccos(X(0))) (19)

We can now express this transformed discrete logistic map as a direct evaluation of a Tchebyshev polynomial:

x(t+ 1) ≡ Tn(x(t)) (20)
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Or

x(t+ 1) ≡
⌊n

2 ⌋∑
k=0

(
n

2k

)
(x[t]2 − 1)kx[t]n−2k (21)

Now we draw the reader’s attention to the Taylor series expansion (for matrices) for equation (12), the Kuramoto
ESN activation function:

x[t+ 1] = x[t]

n∑
i=0

(γtW )i

i!
(22)

Attempts have been made to truncate equation (22) at a suitable n, and equate terms in (21) with terms in (22). The
use case of Tchebyshev polynomials to interpolate functions may lead to a formal mathematical description of how
the ESN learns the logistic map for a ∈ (0, 4].
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